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•  One way to preserve the proton polarization in AGS 
during the acceleration, is to introduce Cold and 
Warm helical Snakes in AGS which: 
–  Introduce artificial spin resonances for lossless polarization 

when crossing the imperfection spin resonances. 
–  And also modify the spin tune to prevent many intrinsic 

spin resonances.   

•  The helical Snakes alter the beam optics of the AGS 
and the “Thin Quads” help restore the beam optics.  

Why inserting a Thin Quadrupole in AGS? 

The strength of the “Thin Quadrupoles” is time varying therefore the iron core must 
be laminated.  



•  Actually…I agree it is Not a  “Big Deal”. 
•  However…. 

–  During the stage of the transient-3D-calculations, among 
other quantities, the computer code was also providing power 
losses in the iron core of the magnet as a function of time. 

–  The trend of some of the power losses as a function of time, 
as calculated by the code, appeared to me, initially, to  be in 
error.  

–  Soon I found an explanation, that the calculations are not in 
error. 

–  I. Marneris confirmed also that the measured power losses, 
agree qualitatively with the theoretically calculated.  

So what’s the “Big Deal”?  Just another Quadrupole. 



Where are the Thin Quadrupoles located in AGS? 
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Location of Thin Quads
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Specifications of the Thin Quad 

•  Liron=9 cm 
•  Liron+coil=17.2 cm 
•  Aperture Radius=8.3 cm     
•  turns/coil=52   (Four layers x 13 turns) 
•  Conductor cross section=0.8cm x 0.8 cm 

Required strength of the Thin Quadrupoles: 

∫Gdl=K1·Leff·(Bρ)=(0.3m-2 )·(0.35m ) ·(7.21Tm )=0.757 [T] 

For Radius of Rquad=8.3 [cm] and Iron length 9 [cm] an approximate 
value of the Bpole_tip is:  

Bpole_tip= {(∫Gdl)/(Liron+Rquad)} ·(Rquad)=0.39 [T]  

Geometric Parameters of the Quads 



Procedure of the Calculations 

•  Design of a 2D-model (Static Calculations) 
–  Provides good approximation of the pole shape 

•  Design of a 3D-model (Static Calculations) 
–  Helps minimize the higher order magnetic multipoles by 

shaping the ends of the pole pieces  

•  Use of 3D-Transient calculations: 
–  Optimize lamination thickness 
–  Optimize vacuum chamber thickness 
–  Minimize losses due to Eddy currents 











Results from 3D Static Calculations 
•  I=350 A 
•  J=804 A/cm2 

•  Bpole_tip=0.5062 [T]              at R=8.2 cm 
•  ∫Bquaddz=  6.015·10-2 [Tm]   at R=7.0 cm  (∫Bquaddz)/R=0.86 [T]  required 0.8 [T] 

•  ∫B12poledz=+1.07·10-4 [Tm]  at R=7.0 cm   +17 units 
•  ∫B20poledz=-2.8·10-4  [Tm]   at R=7.0 cm    -48 units 
•  ∫B28poledz=-0.54·10-4  [Tm]   at R=7.0 cm     -9 units   
•  L=0.0094 H 
•  V=VL+VR=L•dI/dt + IR =0.0094[H]*(350[A]/0.2sec) + 350[A]*R 
                                              =16.5 [V]            ±                      11.5 [V] 

•  Lcond=85 [m] Acond=0.0000435 m2   ρCu=1.673·10-8 [Ωm]    R=0.033 [Ω] 

Allowed Harmonics: 

Br(z,r) = Bquad(z,r) sin(2θ) + B12pole(z,r)·sin(6θ) + B20pole(z,r)·sin(10θ) + … 



Transient Calculations: 
Time varying current in the Quad 

•  To determine the maximum iron lamination thickness 
which will not affect dramatically the quality of the field 
as compared to that of the static field. 

•  To calculate  
–  the Ohmic losses in the iron laminations  
–  Conductor coils 
due to the eddy currents  

∇xH = J + ∂D/∂t 

∇xE = -∂B/∂t 

J = σE 

Maxwell Equation are Approximated at “low frequency” and λ>>model size 



Data for the time varying calculations 

•  The current as a function of time is a linear ramp 
(t=0sec,I=0A)  to  (t=0.2 , I=340 [A]) 

•  Iron plates of  thickness {9, 4.5, 2.25, 1.80, 1.50, 1.106, 1.12, 
0.996, 0.553}  [cm] are use to make the 9 cm thick quadrupole 

•  The assumed conductivity of the iron was 1·107 [Ωm]-1 

•  The usual conductivity of magnetic iron is 0.77·107 [Ωm]-1 
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 Gradiend vs time  for Various Lam Thicknesses

Lam=9.0 cm
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Lam=0.595 cm
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Some Results from the measurements: I=300A, R=7 [cm] 

∫Gdz [T] ∫(Oct)dz/ ∫Gdz 
10-4 

∫(12p)dz/ ∫Gdz 
10-4 

∫(20p)dz/ ∫Gdz 
10-4 

∫(28p)dz/ ∫Gdz 
10-4 

Trans.C
alcul. 0.85 0 -20 -210 -35 

Measur
Quad#1 0.87 -7 +55 -45 -13 

Static 
Calc. 0.86 0 +17 -48 -9 
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Power Decipated in Iron vs time
Quad length= 9 [cm]   Ramp=0.2 secs

Lam=9.00 cm Omic_Loss=120 J 
Lam=4.50 cm Omic_loss=100 J 
Lam=2.25 cm]Omic_Loss= 67 J 
Lam=1.80 cm Omic_Loss= 52 J 
Lam=1.50 cm Omic_Loss= 40 J 
Lam=1.12 cm Omic_Loss= 25 J 
Lam=0.996 cm Omic_Loss=20 J 
Lam=0.595 cm Omic_Loss=  9 J 



Skin Depth       δ=(2/ωµ0µσ)1/2	


Magnetic Flux Parallel to 
Lamination or Normal to plane 

Lam Thick Lam Thick 

f=1.25 sec-1     µ0=4π10-7 [Hen/m] 
µ=6000      σ=1.0x107 [Ohm-1 m-1] 

δ=1.8 [mm] at µ=6000 
δ=5.8 [mm] at µ=600 



Thick Lamination 

Time=t1 



Thick Lamination 

Time=t2 



Thick Lamination 

Time=t3 



Thin Lamination 

Time=t1 



Thick Lamination 

Time=t2 



Thick Lamination 

Time=t3 

Eddy Currents Cancel 



Power provided by PS 
I2Rcoil+”I2eddyRAC_coil“+Loss-in-Iron 
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What is the ratio ∫Bsexdz /∫Bquaddz for an AGS main magnet at the 
Radius R=5 cm? 

•  K1 (of AGS at 1 to 2 GeV/c) ~0.0485 m-2 (MAD) 

•  K2 (of AGS at 1 to 2 GeV/c) ~0.0111 m-3 (MAD) 

•  K2/K1={2Bsex/(Bρ)R2}/{Bquad/(Bρ)R} 
•  Bsex/Bquad=60x10-4     at R=5 cm 




